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INTRODUCTION

The concept of constructing a seafloor contour

map by means of stereo-sonar imagery has been inves-

tigated by Mittleman and Malloy of the Civil

Engineering Laboratory, Naval Construction

Battalion Center, Port Hueneme, California," [1].

This investigation was mainly theoretical but included

some qualitative results of scanning the seafloor with

a pair of laterally separated, side-looking, sonar fish.

Because of virtually no precision in the estimate of

fish separation, it was not possible to compute rela-

tive target elevations. However, direct stereoscopic

viewing of some of the sonar-image pairs did result in

the blending of seafloor features into a three-

dimensional illusion. From these results it was

concluded that stereo-sonar techniques could be used

for contour mapping of the seafloor in the same way

that stereo-photo techniques are used to map land

areas.

In June 1973, further sea trials were conducted

by CEL in an attempt to study quantitatively the

concept of stereo-sonar mapping. Two basic improve-

ments in stereo-sonar technology were made for these

sea trials: (1) a side-scan system was used having a

sonar frequency lower by an order of magnitude than

the frequency of the system used in the investigation

of Reference 1; and (2) the lateral separation of the

two sonar fish was doubled. Lowering the sonar

frequency allowed coverage of a relatively large sea-

floor area, yielding, in turn, more data for a given

operational period. It was assumed that increasing the

lateral separation of the two sonar fish and towing at

relatively short cable lengths would maintain a con-

stant horizontal separation of the two fish; and,

hence, target elevation errors would be less than 3

feet in 100 feet.

The June 1973 work described in this report was

performed to produce sonar-image pairs which, not

only would blend into a three-dimensional picture

when viewed stereoscopically, but also would allow

digital computation of seafloor contour data by inter-

facing the computer with the settings made by the

stereo operator.

THE STEREO-SONAR PROBLEM

Stereo plotting to construct land contour maps

from stereo-photo pairs is used because a human

observer with his two eyes can pick out points of

equal elevation with high precision. He can do this

more efficiently than a machine and at lower cost. A
machine subsystem can then be used to take the

stereo observer's adjustments and produce numerical

values for the contours.

A basic problem in side-looking stereo-sonar

mapping is the requirement that the seafloor be

scanned a line at a time, instead of an area at a time

as in aerial stereo-photo mapping of land topography.

This requirement imposes a severe restriction on the

allowable magnitude of system errors because in the

line-scanning system, information is obtained at a

much slower rate than in the area-scanning system.

Another problem in stereo-sonar is that sonar

measures range instead of angle as in optical imaging.

Whereas the eye-brain system directly yields precise

information on elevation differences if the image pair

is obtained optically, in the stereo viewing of sonar

image pairs, the eye-brain system yields false eleva-

tion differences. Hence, it becomes necessary to

transform the false elevations to true elevations by

using a set of equations. As outlined in Reference 2,

this has been done for radar-stereo imagery. Side-

looking airborne radar measures range in the same

way that side-scan sonar does; that is, by measuring

the travel time of the signal.

Further problems arise when an attempt is made

to view stereo-sonar imagery in a stereoscope and to

create a three-dimensional illusion. The result is

Designation prior to January 1, 1974: Naval Civil Engineering Laboratory,

Port Hueneme, California.



usually not a three-dimensional picture. This is due,

in the case of large targets, high resolution, and near-

bottom scanning, to different rates of parallax

change between shadow and target signals [3]. In

the case of high-flying stereo-sonar scanning, where

the essential imagery is contained in target returns,

the three-dimensional illusion is created only if suit-

able contrast and resolution are present [ 1 ]

.

Figure 1 shows the geometry of the stereo-sonar

system. The equations which take the echo ranges,

R, and R,, to the relative target elevation are the

following:

B = (h^ + H^)2,1/2

d = tan"'(h/H)

? = |(R2 - Ri)/2b} - (B/2)

,„2 f-2,1/2
V = (Ri - I )

y^ = -(I + B)sin0 + tj cos(

X, = (^ + B)cos0 + 77 sin (

(1)

(2)

(3)

(4)

(5)

(6)

errors (relative to shore or a fixed seafloor point)

below several yards.

Figure 2 is a schematic diagram of a contour

plotting system utilizing the principles of the double-

projection, direct-viewing stereoplotter. In the stereo

plotting of seafloor contours using side-scan data, the

operator would begin somewhere on the crosstrack

line passing through the first along-track point of the

sonar-stereo scan. Labeling each recognizable target

point on this first crosstrack line, the operator would

move the viewing screen vertically and horizontally

until the no. 1 target point appeared to lie in the

plane of and at the center of the screen. His eye-brain

system, with the aid of conventional stereo goggles

(for example, red-green), would make this possible.

Mechanical linkages between viewing screen and the

computer would cause the sonar ranges, Rj and R,,

to be fed into the computer in feet. (Of course, with

optical stereo images in front of the two projectors,

no computer is necessary; and the operator simply

makes a mark on the map surface directly below the

center of the viewing screen.) With stereo-sonar

images in front of the projectors, the computer would

take Rj and R, and, using Equations 1 through 6,

calculate the target position.

where B = |B|

B = fish-pair vector

6 = direction of B, relative to

horizontal (positive for

fish no. 1 above fish no. 2)

h = vertical component of B

H = horizontal component of B

y^ = vertical distance of target

below fish no. 2 (positive

for targets below fish no. 2)

The sixth equation yields, x^, the horizontal distance

of the target from fish no. 2. However, unless a

shore-based fish navigation system is used, this com-

putation is not important. Presumably, it is much

easier to keep systematic fish-depth errors below a

yard or so than it is to keep the systematic horizontal

b „ _ Change in parallax (feet)

Change in range (feet)

Figure 1. Geometry of stereo-sonar system for

computation of target position.

The problem with the procedure described

above is that the operator would have to go through

all of the target points on each crosstrack line, and

then instruct the computer to arrange the



projector 1 projector 2

(green light)

fish-pair vector

fish depths

fish X-positions

towing speed

R, and Ri in feet

datum surface

digital computer

Equations 1-6

X-Y plotter

Figure 2. Schematic of double-projector direct-viewing stereo plotter.



target-position data into equal-elevation sets. Feeding

these sets, successively, to an X-Y plotter would then

yield the usual type of contour map. With optical

stereo pairs in front of the projectors, this final

sorting process is unnecessary because the operator

directly plots equal-elevation points as he constructs

the map.

The brute-force procedure is to directly measure

Rj and R2 without using a stereo-projector/computer

system (such as in Figure 2); but the assumption is,

and has been from the beginning of this investigation,

that the stereo-viewing approach will be faster and

less expensive. This assumption is based on the reason

used in stereo-photo plotting: it is easier to match

corresponding target points by stereoscopic viewing

than by (1) looking at the separate images, (2)

picking out what appear to be matching points, and

(3) making measurements directly on the image sur-

face with a calibrated scale.

Hence, provided system errors are under a

specified magnitude, the practical value of stereo-

sonar contour mapping by stereoscopic viewing

depends on how photographic we can make the

images. The sonar-pair images must blend together in

such a way that there is an insignificant probability of

matching images which do not correspond. The

image-definition problem is as important as the fish-

vector measurement problem. Even with infinite

precision in the measurement of B and the fish

positions in a shore-based reference frame, if the

imagery cannot be fused into a three-dimensional

illusion, stereo plotting is not workable.

SEA TRIALS

Sonar Equipment

The towed sonar system consisted of two

side-looking sonar fish operated through a dual-

channel transceiver/recorder having a wet-paper chart

readout. Each sonar fish was a Klein Model 402A,

shown in Figure 3 on board the towing vessel. The

deck equipment was a Klein Model 401 recorder

(Figure 4) and a specially built auxiliary unit for

operating both fish simultaneously.

Each sonar fish was operated at 100 kHz and up

to a maximum of 10 pps with pulse length of 0.1

msec. The two-fish system, including two 300-foot

electromechanical cables, was furnished under a lease

agreement with Klein Associates, Inc., Salem, New
Hampshire.

Tow System

A schematic of the tow system is shown in

Figure 5. A 42-foot, 2-inch-diameter steel pipe was

attached to the stern of an LCM-8 and stabilized by

lines connecting the ends of the pipe to the gunnels

and the wheel house. The starboard section of this

outrigger system is shown in Figure 6, with the fish

under tow. Towing speed was held at approximately

2 knots.

The required tow-cable lengths were estimated

for the desired depths and trailing distances of the

two fish. The estimates were based on assumed values

of hydrodynamic parameters, such as drag and cable

buoyancy. The Klein electromechanical cable, having

an outside diameter of 3/8 inch and utilizing a fiber

glass strain member, was used for towing and signal

transmission. After the required towing lengths were

calculated, each cable was tied to the outrigger pipe

as shown in Figure 6; and the excess cable was

wrapped around a gunnel bitt and coiled on deck.

Stereo-Sonar Operations

All of the stereo-sonar data were obtained at

two near-shore areas. One area in the vicinity of CEL

was about 2.5 nautical miles offshore with a depth of

about 100 feet. The other area, just outside the surf

zone at the Carpinteria beach about 22 nautical miles

up the coast from CEL, had an average depth of

about 25 feet.

Because the 100-foot-depth seafloor area near

CEL is essentially featureless, an array of artificial

sonar targets was implanted. Four reflectors were

spaced about 500 feet apart, connected by a bottom-

lying 1-inch-diameter wire rope. Each reflector was a

2,600-pound concrete block to which was attached a

buoyant 3 5 -inch-diameter aluminum sphere. A
schematic of the array is shown in Figure 7.

The 100-foot-depth area was chosen to permit

same-side stereo scanning with maximum bottom

coverage. The tow-cable lengths were adjusted to pro-

duce the geometry shown approximately in Figure 8.

Tow-cable lengths for fish no. 1 and no. 2 were

adjusted to 80 and 20 feet, respectively, yielding

depths of roughly 30 and 20 feet, respectively.



Figure 3. Side-scan fish with tow/signal cable.

Figure 4. Sonar transceiver/recorder.



towed side-scan

sonar fish

Figure 5. Stereo-sonar tow system schematic.

Although the manufacturer's specifications state that

the vertical sonar angle, d^ , is 20 degrees, it was

assumed that in the 100 to 200-foot range adequate

returns would be generated within a vertical angle of

about 50 degrees.

To maximize stereo target-detection probability,

the fish-vector B was oriented toward the assumed

target area (marked by surface floats as shown in

Figure 7). This situation, of having B slanted down

instead of up (see Figure 8), creates a bad situation

with respect to the precision of determining target

elevation, y^. If the target is on the line passing

through the two fish (that is, on the extension of B),

the theoretical random error in y^ becomes infinite.

This is intuitively clear and is shown quantitatively by

the error-propagation equations of Appendix A. It

was believed, however, that the risk of having large

errors in y^ was worth taking because of the small

stereo target-detection probability associated with a

slanted-up fish vector.

It was also suspected that a relatively large value

of the elevation angle, |3; (see Figure 8) would

decrease the one-fish target-detection probability

because of the small shadow associated with a large

j3j. A low-/? (low-flying) situation would cause large

errors in y^.

Hence, with all of the above considerations, the

geometry of Figure 8 appeared to be optimum. A
better geometry might have been opposite-side stereo

(assuming that image blending is possible) with a

horizontal B component of around 200 feet. A

Figure 6. Starboard section of towing outrigger.



Figure 7. Schematic of artificial target array.

Figure 8. Geometry of same-side stereo scanning

at 100-foot-depth site.

horizontal component of this extent was, however,

not feasible. Analysis of outrigger statics and

dynamics showed that a 42-foot length was the ma.xi-

mum tolerable.'^

The other near-shore area, just beyond the surf,

was chosen because of the abundance of prominent

rock outcroppings. Although low-flying stereo

scanning was required, with its attendant problems of

grounding probability and error propagation, it was

believed that the highly contrasted imagery would

demonstrate the feasibility of fusing sonar charts into

a three-dimensional illusion.

RESULTS OF SEA TRIALS

The sea trials covered a period of 6 days, during

which 15 hours were actually devoted to stereo

scanning. Out of these 15 hours, about 3 hours

yielded data which appeared to be usable in

Equations 1 through 5. The data were those image

points on the sonar charts which were recognizable as

either the artificial targets, including the bottom-lying

wire rope, or a rock outcropping.

The remaining 10 hours of sonar scanning

yielded imagery which did not contain clearly

identifiable targets. Most of this data resulted from

the existence of sea state 1 or greater during that

time. From the sonar-chart readout and direct obser-

vation of outrigger and tow-cable motion during sea

state 1 or greater, it was estimated that vertical

motion of either one of the sonar fish was in excess

of 4 feet, peak-to-pea-k. At the 100-foot-depth site,

with approximate sea state 0, peak-to-peak vertical

motion of an individual fish appeared to be under 4

feet, and imagery was produced in the sonar readout

which could be blended into a three-dimensional

illusion. Figure 9 shows a section of stereo-sonar

imagery of the 100-foot-depth target array for sea

state 0.

Table 1 gives the results of 10 side-looking

stereo sweeps at the 100-foot-depth site. The maxi-

mum possible number of measurements on a given

sonar reflector is five. Crosstalk and mutual inter-

ference effects were minimized by using different

tow-cable lengths and, thus, staggering the two fish

out of each other's beam.

A sea test was conducted to see if a pair of manned small boats could be towed at a constant separation of 50 feet.

With a tension line between the two boats, their separation could be held constant in a harbor tow; but, in the open

sea, even small-wave action made it impossible to maintain a constant lateral separation.

Long sections of the 1-inch wire rope are clearly discernible in the sonar charts. Because of the high resolution and

contrast of the wire-rope imagery, three-dimensional blending is possible. However, the resolution of the sphere-

block targets was not sufficient to yield three-dimensional imagery.



Table 1. Results of Stereo-Sonar Scans of 100-Foot-Depth Target Array

(Assumed value of horizontal stereo baseline, H, is 42.00 feet.)

Time Target"

Fish No. 1

Echo Range,

Ri (ft)

Fish No. 2

Echo Range,

R2 (ft)

Fish Pair

Depth

Difference,

h(ft)^

Computed

Target

Elevation,

Vt (fo

Spread In

Target

Elevations,

Yt (ft)

0807 SBl 117.59 116.10 -19.17 105.88 9.80

0807 WRl 120.70 165.77 -19.16 95.53 9.77

083 3 SBl 118.11 162.14 -21.75 115.68

0833 WRl 121.73 165.77 -19.16 105.30

0734 SB2 94.28 140.38 -19.69 70.77 12.09

0734 WR2 97.91 144.01 -19.69 72.67 24.92

0831 SB2 107.23 154.37 -19.68 65.19

0831 WR2 112.93 158.51 -20.20 92.72

0838 SB2 138.31 186.49 -18.13 72.95

0838 WR2 142.97 189.60 -16.58 69.07

085 3 SB2 55.43 95.83 -23.83 77.28

085 3 WR2 62.16 101.01 -23.83 84.56

0719 WR2 102.05 147.64 -18.13 67.80

0829 SB3 110.86 158.00 -19.68 66.73 57.37

0829 WR3 113.96 160.59 -19.69 68.05 15.60

0648 SB3 146.60 194.26 -17.61 74.31

0732 WR3 138.31 187.52 -21.24 83.65

0720 SB3 88.06 126.91 -18.65 97.46

0749 WR3 155.41 202.55 -18.65 81.71

0839 SB3 143.49 191.67 -17.61 73.10

0851 SB3 101.01 145.56 -29.01 124.10

0750 SB4 117.07 163.69 -18.13 64.5 3 25.70

0750 WR4 123.81 170.95 -17.61 65.49 30.20

0827 SB4 125.36 171.98 -20.21 74.54

0827 WR4 130.02 176.13 -19.69 89.45

0842 SB4 121.22 165.77 -17.61 90.23

0849 WR4 105.68 150.74 -20.73 95.69

0849 SB4 99.98 145.56 -20.72 88.01

"SB
Average value: h

sphere-block; WR = wire rope on bottom next to SB.

19.85.



Distance, R; In the next-to-Iast column of Table 1, the

computed relative elevation, y^, is given for every

time the image appears. The parameter, h, of

Equation 1 was calculated by taking the difference

between the off-bottom heights of the two fish. This

calculation, of course, assumes a flat bottom. The

horizontal component of B was assumed to be the

outrigger length, 42 feet.

Table 1 reveals a marked scatter in the set of y^

values for any given target. For example, the target,

SB3, has five computed values of y^, and the

difference between minimum and maximum y^ is

57.37 feet. The difference value, Ay^, is given in the

last column of Table 1 for each target. The smallest

Ay^ is 9.77 feet.

Presumably, the large spread in y^ for a given

target is the result of (1) errors in the measurement of

the components of B, and (2) target points lying on

or near the line through the two fish. Systematic

errors in h could be expected since this parameter had

to be computed from off-bottom fish heights. Having

target points on or near the extension of B was

evidently the result of "eyeballing" the LCM-8 course

relative to the surface floats.

In an attempt to estimate the magnitude of

average systematic and random errors in h and H
during the 100-foot-depth scans, a least-squares

computer analysis of the Table 1 data was made. A
FORTRAN program (Appendix B) was written to

determine the set, { Hj, h:|, which minimizes the

mean-square error, e, defined by

Distance between horizontal lines =15 meters

Time between vertical lines = 2 minutes

IN

y^y (7)

where N number of times the target is

scanned

Figure 9. Two-fish sonar-chart readout of artificial

target array.

N

Vti

i = l

y^ for i"^ computation

The results are given in Table 2. The average

value of h is -17.25 feet, compared to -19.85 feet as

computed from off-bottom fish heights (Table 1).

The average value of H is 43.06 feet, as compared to



the assumed value of 42.00 feet. Random error in h is

7.5 feet; random error in H is 2.6 feet. Relative

vertical fish oscillations of this magnitude could be

expected, as can be seen in Figure 9, and because of

the sensitivity of fish depth to tow speed. However, a

random error in H of almost 3 feet is surprising, since

there is no hydrodynamic reason to expect this. At

any rate, the computed systematic and random errors

in h and H explain the pronounced spread in y^. An

example calculation in Appendix A shows that an

0.5-foot error in each of the four parameters, R^, R2,

H, and h yields an error of 3 feet in y^ for a 100-foot

depth.

Table 3 gives the results of the one-time sweep

of the Carpinteria rock outcroppings. A single sweep

was made of a stretch of outcroppings approximately

4,000 feet long, running roughly parallel to the

beach. No attempt was made to repeat this sweep

because of the high probability of grounding one or

both fish. The values of y^ (Table 3) were obtained in

the same way as for Table 1. Figure 10 is a section ol

the stereo-sonar imagery obtained at the Carpinteri.i

site.

There is a smaller spread in the y^ values in

Table 3 than one would expect from using the small

elevation angle, i3j. Since nominal water depth along

the towing track was about 25 feet, 80% of the y^

values of Table 3 are possible. As shown in Figure 1 1,

a least-squares linear fit to the y^-versus-Rj data

yields a line having a slope of 3.9 degrees, which is

not more than 2 degrees greater than the actual

seafloor slope. The intercept (Figure 11) is 17.7 feet,

which, again, is consistent with the actual depth of 25

feet, since the two fish were about 5 feet under the

surface.

The imagery of the Carpinteria seafloor is

highly photographic for the fish nearest the

target (upper chart, Figure 10). However, the

imagery from fish no. 2 is degraded, and it is

impossible to fuse the two charts into a three-

dimensional illusion.*^ The degradation is

apparently caused by the interference of the

near fish (no. 1) with the beam of the far fish

(no. 2). Staggering the two fish was not

possible by . the technique used in the 100-foot

scannings. Towing the two fish at different

distances would have increased the likelihood of

grounding.

Distance, Rj

A

Time

- '"m^ ^™'^^"*'™™'™™"'"''™™""mm

V .;
,

-".«.^ "
•

">—
^:^'~^^r——y^-^-^ ;__.-_~,,,,-^^-_--_,;._-„->.--:-i^".^

^

^•^-

Distance between horizontal lines =15 meters

Time between vertical lines = 2 minutes

Figure 10. Two-fish sonar-chart readout of rock

outcroppings.

Stereoscopic viewing would require that one of the charts be observed via a mirror, or made into a

transparency and viewed from behind.

10



Table 2. Results of Least-Squares Analysis of 100-Foot-Depth Data

Target H- (ft)"'
''

hj(ft)"'^

SBl 45.50 -30.00

WRl 42.00 -12.00

SB2 44.00 -17.50

WR2 45.00 -13.00

SB3 37.00 -30.00

WR3 45.00 -12.50

SB4 42.50 -12.00

WR4 43.50 -12.00

Average values: H = 43.06 feet

Ojj = 2.57 feet''

h = -17.25 feet"

0,, = 7.5 3 feet'^

N

^
I
Hj, hj

I
is the set, consisting of the i' value of H

and the j'^ value of h, which minimizes the mean-

N

square error — Y^ (y, - yt-) .where 37.00 <
N ^^ '

i=l

H; < 46-00 and 12.00 < Ih- 1 < 30.00.

N ^^
i= 1

(X - X;)^

number of times target elevation is computed.

Table 3. Results of Stereo-Sonar Scan of Rock Outcroppings

(Assumed value of horizontal stereo baseline, H, is 42.00 feet.)

Time
Outcropping

Target

Fish No. 1

Echo Range, R^

(ft)

Fish No. 2

Echo Range, Rj

(ft)

Fish Pair Depth

Difference, h

(ft)

Computed Target

Elevation, y^

(ft)

1343 1 33.67 72.01 -2.59 24.21

1331 2 62.16 103.61 5.18 3.58

1331 3 102.57 141.94 5.18 27.31

1331 4 93.76 134.17 5.18 17.13

1331 5 53.36 88.58 4.66 28.34

1327 6 84.44 125.88 5.69 4.74

1342 7 65.79 109.30 0.00 0.00

1340 8 55.43 96.87 -1.55 15.74

1327 9 93.76 134.17 6.22 15.03

1325 10 44.03 85.48 6.73 0.26

1316 11 157.48 202.03 0.00 0.00

11



3.9 degrees

Figure 11. Plot of y^ versus Rj for rock

outcroppings.

A minor problem with the imagery of Figure 10

is that the return signal to each fish was produced by

the outgoing pulse from the near fish/ This was,

presumably, the result of mutual interference.

DISCUSSION

The results given in the preceding section clearly

indicate that stereoscopic mapping of the seafloor

from sonar data will require continuous and precise

measurement of fish depths, separation, and lateral

position in a fixed earth's reference frame. Because of

the low rate of scanning the seafloor (the result of an

energy propagation velocity of 5,000 ft/sec, com-

pared to the velocity of light of 186,000 mi/sec), the

only signal-processing approach to solving the slow-

scan problem is some kind of automatic bridging

process from one line scan to the next. This would

only work for continuous targets extending through-

out the swept area, for example, a long trench or

cliff. Moreover, the circuitry needed for a bridging

process of this sort would be more sophisticated than

the circuitry and the acoustic transducers, combined,

needed for measuring fish depth, fish separation, etc.

It is within the state-of-the-art to measure fish

depths and fish separation with sufficient precision so

that, with same-side stereo scanning, the relative

target elevations are obtained with errors under 3 feet

in 100 feet (see Appendix A). However, because of

the likelihood of near-B points and the consequent

large errors in y^, it might be better to design a

stereo-sonar system with a fish separation sufficiently

large to allow opposite-side scanning. With

continuous measurement of fish separation, the

rigging and auxiliary structures for such a towing

operation need not be too complicated. The idea of

two manned catamarans connected by a crosstrack

tension line might prove feasible. Large variations in

separation distance during towing would be tolerable

as long as the separation were precisely known for

each line scan. The problem with opposite-side stereo

scanning is, of course, that image correlation may be

impossible for asymmetrical seafloor features, such as

a cliff.

From the data obtained at the 100-foot-depth

site the imagery problem can be avoided as long as

fish heave, peak-to-peak, is less than 4 feet for echo

ranges on the order of 100 feet. At greater depths,

say 600 feet and more, as the result of greater

tow-cable lengths vertical fish oscillations could be

kept under 4 feet even in sea states higher than zero.

Crosstalk or interference are no problem if tow

distances are unequal; and, in low-flying sweeps in

very shallow water (approximately 25 feet), control-

lable fins could be used to allow unequal trailing

distances without danger of grounding.

Appendix C presents a description of a proposed

analog signal-processing system which eliminates the

need for interfacing a stereo operator's manipulations

with a digital computer. The proposed system com-

pletely eliminates the need for fusing two sonar

charts into a three-dimensional illusion; instead, the

system produces in real time a readout equivalent to a

stereo pair obtained photographically.

Computation of target range, Rj, requires the equation:

•^2 = 2R2 - Rj

where R, is the value read directly from the chart.
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CONCLUSIONS REFERENCES

1. In a zero sea state, towing the two sonar fish at an

average depth of 17 feet and average speed of 2 knots

caused a random error of about 2.6 feet in the 43-

foot horizontal baseline. Random error in the relative

vertical separation of the two fish was around 7.5

feet. Even though the magnitude of these errors was

probably a function of the particular sonar fish used

in the investigation plus the physical parameters of

the tow cable, the outrigger, and the towing vessel, it

is concluded that, in same-side stereo, the depth of

each fish and the lateral separation of the two fish

must be continuously measured with a precision of

about 0.5 foot in 40 feet.

2. In same-side stereo scanning, 100-kHz sonar imag-

ery will be suitable for fusing into a three-dimensional

illusion if the two fish are towed out of each

other's beam and the heave for an individual fish

is under 4 feet, peak-to-peak, at off-bottom heights

around 70 feet.

1. J. R. Mittleman and R. J. Malloy. "Stereo

side-scan sonar imagery," in Proceedings of Seventh

Annual Conference of Marine Technology Society,

Washington, D.C., Aug. 16-18 1971, pp. 395-422.

2. M. M. Thompson, Ed. Manual of photogrammetry,

3rd ed., vol. II. Falls Church, Va., American Society

of Photogrammetry, 1966, pp. 1030-1035.

3. Naval Civil Engineering Laboratory. Technical

Report 787: Rotating acoustic stereo scanner for

positioning loads onto the seafloor: Preliminary

observations on an experimental model, by R. D.

Hitchcock. Port Hueneme, Calif., April 1973.

RECOMMENDATIONS

An analog signal-processing system should be

developed for producing an optical-stereo readout in

real time from side-looking sonar returns. At-sea

testing of this system should be conducted using a

commercially available, side-scan system interfaced

with conventional acoustic devices for continuously

measuring fish depths and fish separation.
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Appendix A

PROPAGATION OF MEASUREMENT ERRORS

The random error, Oy , in relative elevation, y(, is computed from the equation:

< = Z
a?i

"''

where ^j = Rj

tj = H

U = h

From Equations 1 through 5 presented in the main text:

v;— = - I sin 6 + — cos 6 I

9R2 B \ V /

r?h) sine +(^-?-^)cose

) sine + (^-^-^^cose
3yt 1

Example calculation:

Let Rj = 83 feet; Oj^ = 0.5 foot

R, 121 feet; 0.5 foot

H = 42 feet; CTjj = 0.5 foot

h = 20 feet; a^^ = 0.5 foot

Therefore, 9yj/9Rj = 3.76

ay(/aR2 = -3.58

9yj/3H = 3.58

ayj/ah = -1.18

Oy^ = 'V<*'-5)^|(3-76)2 + (3.58)2 +(3.58)^ + (1.18)^
[

^ 3.2 feet

(A-1)
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Appendix B

FORTRAN PROGRAM FOR LEAST-SQUARES ANALYSIS OF TABLE 3 DATA

DlMENilOK HISh) (?) «H2Sbl (?) »Hlbb2 (4) ».^?SB> (4) ,R1SB3(5) »H?<i>H3(5) »

iH'iSH4l4),Hi::bB4(^),f'lwP](l'),lK?AHl(2),HlwfxZ(5)»R2WR?(5),t^lwR3(J),
1F<^WR3(3) »Hlv^t^4 (3) R^'/JR<+ (3) »h 119) »ETA] (19) ,ETA?(]9) .Y (5) »AYT (19,]9»

7

9

]C

11

12

13

14

lb

/IF(A»R,C) = ( (A*A-b*tt)/ (2.«C) )- (C/2.)
tlAf-- (A

YTP(A,H)C»U)=-iA + B)*SI'\(C)+l)*CU5(C)
READ
RFAO
RFAd
RFAii

RtAl,.

RFaIi

RtAl)

RFAU
READ
RF. AH
READ
REAL)

RF-AU
READ
REAO
RFAD

8) »tt (6) £ (19» 19»19) Lhi\!(H)
= SGR I «A*A-fH^*t5)

H)=SURT (A«A-b*H)

R?Sbi
Kl SHc
R?Sti<:

H)SbJ

R]Sb4
R?Sd4
R 1 lA R i

R ? /. P i

Rl f-Rc

f< ? V* R (C

R 1 vv R J
R ? l^ R j

R I V» R 4

H2Wh<H
hl=37.i
F lAin = ?3.(i

ET A? '! = ?.('

RSC = 5i.bf^
DC 5 i\=l»e
IF (N-n 6»c»7
Ll = ^

GC TU R

IP (fM-?) 9o»1i
Ll=^
GC TO P.

IF (iNj-j) 1 I til , 12

Ll = 5

GC Tu R

IF (r-i-4) 1J>13»]4

GC TO P

IF (iM-b) 15»15«16
Ll=2
GC TO 8
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16 IH (iM-b) 1 7»17» IB

17 Ll=5
GC TO 8

18 Ll=3
e CCNTIKUF

DC 19 I = l»i'5

A1 = I

H(I)=u.5*(Al-l .-/) HU
DO 2 J=l»i'?
AJ = J

FT A] ( j)=ETAA()*i'.b*» (MJ-1 . )

DC ?A K=1 » i*?

AK = ^

E;lA?(^)=F. ^A£:(; + o.'^«(M^-l•)
HV = f:TA?(K)-tTAl (J)

8 = BF (hV^Hl in
AsATAtv (hV/h I I ) )

AY=U.u
DC ?2 L=l Ll
IF (N-1) ?3»<:T»c^

23 RlF=R5C*HlSdl (L)

P2F = HbC<*^^?^cl (L)

GC TO ?5
24 lF(N-£) 2e»c6,r'7

26 RlF = HbC«^^iSt? (L)

R2F=RbC^»^^2bc? (L)

OC TO ?5

27 IF (N-3) ?8»cH»29

R2F=kiC*H2St3 (L)

GC TO ?5
29 IF lN-4) 3-J« jO» Jl

30 PlF = R3C-»HlSd4 (L)

R2F=RbC*R253C'+ (L)

GC TO 25
31 IF (N-b) 32* j2»33
32 RlF=RiC«Hlwhl ID

R2F=R5C«H2rtH I (L)

GC TO 25
33 IF iM-b) 3** » J4»3b
34 RlF=R5C**l^lvvh2 (L)

H2F=R5C*^^2wh^ (l)

GC 10 25
35 IF(fv;-/) 3e,je»37
36 RlF" = RbC-»Rl wr.3 ID

R2F = RbC*^^r i'.H3 (u )

GC TO ?5
37 RlF=Ri)C«Rlwf'4 (D

R2F = HbC*'^^WhA ID
25 XI = XI(- (R?F »hlF »b)

IF (RU-XI ) 3H«3(:'f 39
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38

39
40

22

Al

21
20
19

<+4

43
42

45
46
47
48
51
53
50

54

55
49

ETA
>I =

GC
ETA
YT =

Y (L

AY =

ecu
D = L

AYT
ES =

DC
ES =

CGiM

E(K
CCIM

CCN
ecu
EM
DC
DC
DC
ENI
CCN
CCM
CON
EE(
1 = 1

J=l
K=i
IF (

IF(
IF(
IF (

K = K

GC
J=J
GC
1 = 1

GC
CCN
Phi
HN (

LHN
CCN
ALH
Ah =

AEE
DC

= 0.
WIF
TO
= tl
YTF
)=Y
AY*
TI^
I

(Kf

. iv

41
E5 +

TIK
»J»
TIa
T 1 1\

TIi\

N = 9
42
43
44
N = A

TKn
TIN
TIi\

N) =

4.)

AF (hir ,xl)
{ X I . b. A E T A

)

T+F ] Ac (K)

Y (L)

UE

J, I) =AY/U

M=1
(AY
UF
I) =

UE
UE
UE
999
1 = ]

J=l
^=l
M I N

UF
UE
UE
EMI

T (^^ j« I) -Y (M) J
«»»;

SCjhT (Eb/U)

99.0
»1^
f IS.

»1^
1 ( L M J t^ » E (M J » I n

EE(N)
K-19)
J-19)
1-19)

1

TO 47
*1

TO 46
1

TO 45
TIKUE
NT 56
N) =H (

(Nj=E
TIlsUE
= 0.0
O.u
= 0.n
57 N=

-t (^» J» I) )

5 u » 5 I 5

1

52»53.53
54*55 ?55

4 8 4 9 4 8

»tfA2(t^) ETAl(J) »H{I)»MYT(K,J»l)»tE(N)
I)

TAl U)-ETa?(K)

1 B
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alh=alh + lhn ^^)

AI- = AH*HN (K)

AEt = ALF*Et Uv)

57 CCNTIinUL
ALH=ALh/P.

;

Ah=AH/8.0
AEt. = ALF/8.„'
SLH=0.f-
SH = 0.,>

SEE=0.0
OC 58 lvJ=) ..b

SLH = SLh+ ( ALI--LHr. l,\) )
*<*;>

Sb = SH* (AH-hl\ (N ) )
'-*«?

SEEsSlE* (Att-EF; IN) ) «*2
58 CCNTIMJE

SLHsSUWT (SLh/f . M)

Sh = SQhT(SI-/ci.O)
SEE = Si.HT(Stt./e-. 0)

PhlK'l 59»ALr»SI,,H»/iH.SH» AEE»Stt
1 FCHmAI (2Fb.?)
2 FCRmAI (4Ed.?)
3 FCHmAI (5F8.?)
4 FCRiviAl (3Fc;.2J

56 FCRmAI {3F I'^.^i ?F 1 4 .<t

)

59 FCHWAI (6F ic,^)
EM)

2.27 ?.?e
3.11 3.13
1.82 ?.t. 7 2.67 1.'j7

2.71 ?.98 i't,, ] -H5
2.P3 1.7c 2.J4 2.77 1.95
3.75 2.45 3.05 3.?' 2.61
2.26 2.42 2.34 1»93
3.16 3.32 3 . 2 -J

2.W1

2.33 2.35
3.2C 3.2a
1.97 1.89 2. Jb 2*7'. l.2r-

2.B5 2.76 3.C6 3.«ib i.V5
2,67 3.0 2.2i;

3.62 3.91 3.1,<

2.39 2.51 2.04
3.30 3.4C 2.91
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Appendix C

PROPOSED SYSTEM FOR ANALOG PROCESSING
OF STEREO-SONAR SIGNALS^

The proposed system utilizes echo signals from a

pair of towed side-scan sonar fish to generate, in real

time, a roll of photographic film which can be

directly viewed in a stereoscope to produce a true

three-dimensional illusion of seafloor topography.

The parallax in the stereo-photo image pairs will be

optically true; that is, the image pairs will be the same

as those obtained with a photographic stereo-camera.

The system will, thus, make it possible to produce a

seafloor contour map by the same technique used in

stereo mapping of land contours. No digital computer

will be required as in seafloor mapping from direct

stereo-viewing of sonar charts.

The proposed system is an analog computer that

uses a thin-film photoconductive liquid-crystal

sandwich to produce a series of luminous points

corresponding to off-track seafloor points. This series

of points is imaged by means of a 3-to-2-dirnensional

fiber-optic static-scanning system onto the stereo-

photo film, resulting in paris of stereoscopic traces of

actual topography.

At a particular instant, the system images a pair

of expanding, circular arcs onto the photoconductive

liquid-crystal layered array. This array is capable of

generating light only at the intersection point of the

two arcs. The two circular arcs are initiated at the

same instant that the two sonar pulses are initiated

from the pair of towed fish. As the pulse from each

fish moves out radially into the water, its wavefront

has the shape of a circular arc; an optical image of

each wavefront is reproduced within the system such

that, at every instant, the radius of the optical image

is proportional to the radius of the acoustic wave-

front. Figure C-1 is a schematic of the system up to

the liquid-crystal sandwich.

The system sequentially images certain inter-

section points of the two optically generated arcs

onto a stereo-photo film. This imaging of the inter-

section points is the analog transformation of sonar

signals to optical readout. This analog process

computes the true target coordinates from the sonar

parameters, Rj, R2, and B (Figure 1), just as

Equations 1 through 6 transform sonar to optical

readout by means of a digital process.

The stereoscopic imaging process is performed

by means of a static-scanning, fiber-optic assembly

which maps each intersection point in the vertical

plane of the sonar beam into a pair of stereo points

on the crosstrack line in the plane of the photo-

graphic film. Figure C-2 is a schematic of the

fiber-optics system.

The arc-intersection points imaged onto the

photoconductive liquid-crystal sandwich represent

the beginning of shadow regions along the crosstrack

line. A given crosstrack line in a side-scan chart will

contain blank or no-signal regions because of no

energy being reflected from seafloor regions lying

behind protuberances and outcroppings. These

shadow regions produce negative derivatives in the

echo signal. A circuit between the sonar transceiver

and the optical-imaging system is responsive only to

negative derivatives. Without this feature the system

would image a multiplicity of arc-intersection points

which would not be sensible on the photographic

film.

The proposed system will work for any

orientation of the fish-pair vector, B. If the vector, B,

is continually changing in magnitude and direction

during the tow, an additional device would be

required to continually adjust the relative orientation

of the arc-shaped slits. The successfulness of the pro-

posed analog system, of course, depends on

extremely high precision in the measurement of the

tow-system parameters during each line scan.

* Invention Disclosure, Navy Case No. 57436 (patent application in preparation). The reader is

referred to this Disclosure for a detailed narrative/pictorial description of the proposed system.
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transceiver

optical projector
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sonar-optical
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Figure C-1. Schematic of analog signal-processing up to Liquid Crystal Sandwich.
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Figure C-2. Schematic of fiber-optics system.
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NOMENCLATURE

B Fish-pair vector

DS Dynamic scattering (optical, in liquid crystal)

h Vertical component of B

H Horizontal component of B

N Number of times target is scanned

OC Outcropping

Rj Echo range, fish no. 1

R, Echo range, fish no. 2

R, Echo range, chart readout for OC data

SB Sphere-block

t Time

WR Wire rope

X Horizontal distance of target from fish no. 2

y^ Vertical distance of target below fish no. 2

Z Along-track distance

a Sonar depression angle

j3;
Fish elevation angle

e Mean-square error

17 Value of y^ for 6 =0

6 Direction of B

6 Sonar beam angle, athwartship

5 Value of Xj for =

^j
Stereo-sonar parameter

a Random error
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